
Mac OS X Server
Podcast Producer

Workflow Tutorial

For Version 10.5 Leopard

 Apple Inc.

© 2008 Apple Inc. All rights reserved.

The owner or authorized user of a valid copy of

Mac OS X Server software may reproduce this

publication for the purpose of learning to use such

software. No part of this publication may be reproduced

or transmitted for commercial purposes, such as selling

copies of this publication or for providing paid-for

support services.

Every effort has been made to ensure that the

information in this manual is accurate. Apple Inc. is not

responsible for printing or clerical errors.

Apple

1 Infinite Loop

Cupertino CA 95014-2084

408-996-1010

www.apple.com

The Apple logo is a trademark of Apple Inc., registered

in the U.S. and other countries. Use of the “keyboard”

Apple logo (Option-Shift-K) for commercial purposes

without the prior written consent of Apple may

constitute trademark infringement and unfair

competition in violation of federal and state laws.

Apple, the Apple logo, iCal, iChat, iTunes, Leopard, Mac,

the Mac logo, Macintosh, Mac OS, QuickTime, Xgrid, and

Xserve are trademarks of Apple Inc., registered in the

U.S. and other countries. Finder is a trademark of Apple

Inc.

Adobe and PostScript are trademarks of Adobe Systems

Incorporated.

UNIX is a registered trademark of The Open Group.

Other company and product names mentioned herein

are trademarks of their respective companies. Mention

of third-party products is for informational purposes

only and constitutes neither an endorsement nor a

recommendation. Apple assumes no responsibility with

regard to the performance of these products.

019-1253/2008-04-25

 3

3 Contents

Preface 7 About This Guide

7 What’s in This Guide

8 Using Onscreen Help

8 Mac OS X Server Administration Guides

10 Viewing PDF Guides Onscreen

10 Printing PDF Guides

10 Getting Documentation Updates

11 Getting Additional Information

Chapter 1 13 Introduction

13 Before You Start

14 The Workflow at a Glance

15 Downloading the Workflow Tutorial Files

16 Additional Sources of Information

Chapter 2 17 About Workflow Templates

17 Workflow Variables

18 Workflow Tasks

18 Contents of a Workflow Template

19 About the art.rb Script

Chapter 3 21 Hello World!

21 The Workflow at a Glance

21 Workflow 1 Setup Summary

22 Setting Up Workflow 1

26 Validating the Workflow

27 Deploying the Workflow

27 Testing the Workflow

Chapter 4 29 Encoding Media

29 The Workflow at a Glance

30 Workflow 2 Setup Summary

30 Setting Up Workflow 2

33 Getting Information About the pcastaction Command

4 Contents

35 Deploying the Workflow

Chapter 5 37 Running Tasks in Parallel

37 The Workflow at a Glance

38 Workflow 3 Setup Summary

38 Setting Up Workflow 3

41 Deploying the Workflow

Chapter 6 43 Modifying the Mail Template

43 The Workflow at a Glance

44 Workflow 4 Setup Summary

44 Setting Up Workflow 4

49 Deploying the Workflow

Chapter 7 51 Posting to the Group Blog

51 The Workflow at a Glance

52 Workflow 5 Setup Summary

52 Setting Up Workflow 5

55 Writing a Blog Template

56 Updating the Mail Template

57 Deploying the Workflow

Chapter 8 59 Watermarking

59 The Workflow at a Glance

60 Workflow 6 Setup Summary

60 Setting Up Workflow 6

61 Deploying the Workflow

Chapter 9 63 Adding Quartz Composer Effects

64 The Workflow at a Glance

64 About the Lower Third Composition

65 Workflow 7 Setup Summary

65 Setting Up Workflow 7

67 Deploying the Workflow

Chapter 10 69 Adding an Introductory Video

70 The Workflow at a Glance

70 About the Intro Movie

71 Workflow 8 Setup Summary

71 Setting Up Workflow 8

72 Deploying the Workflow

Chapter 11 73 Dynamic Titling

74 The Workflow at a Glance

Contents 5

75 Workflow 9 Setup Summary

77 Deploying the Workflow

Chapter 12 79 Calling Command-Line Tools

80 The Workflow at a Glance

81 Workflow 10 Setup Summary

81 Setting Up Workflow 10

85 Deploying the Workflow

Chapter 13 87 Integrating with Custom Scripts

88 The Workflow at a Glance

89 Workflow 11 Setup Summary

89 Setting Up Workflow 11

93 Deploying the Workflow

Chapter 14 95 Tips for Designing and Developing Workflows

95 Create a Graph of the Workflow

95 Start Small

96 Use an All-in-One Setup for Workflow Development

96 Validate Your Workflow Before Running It

96 Check Metadata

99 Keep Temporary Files

Chapter 15 101 Debugging Workflows

101 Using Xgrid Admin

101 Using the xgrid Command

101 Monitoring Xgrid Tasks

101 Debugging Failing Commands

6 Contents

 7

P
re

fa
ceAbout This Guide

Use this tutorial to learn how to develop and customize
Podcast Producer workflows.

Podcast Producer Workflow Tutorial takes you step by step through the process of

developing a workflow incrementally.

What’s in This Guide
This guide includes the following chapters:

Â Chapter 1, “Introduction,” provides information you should know before going

through this tutorial.

Â Chapter 2, “About Workflow Templates,” provides an overview of workflow templates.

Â Chapter 3, “Hello World!,” describes how to create a simple workflow that sends email

containing the message Hello World! to a list of recipients.

Â Chapter 4, “Encoding Media,” describes how to encode movies to play on iPods.

Â Chapter 5, “Running Tasks in Parallel,” describes how to configure workflow tasks to

run in parallel.

Â Chapter 6, “Modifying the Mail Template,” describes how to modify a mail template,

which generates properly formatted mail messages.

Â Chapter 7, “Posting to the Group Blog,” describes how to post podcasts to group

blogs.

Â Chapter 8, “Watermarking,” describes how to add a watermark to movies.

Â Chapter 9, “Adding Quartz Composer Effects,” describes how to add the Lower Third

Quartz Composer effect to movies.

Â Chapter 10, “Adding an Introductory Video,” describes how to add an introductory

movie to the movie being processed by the workflow.

Â Chapter 11, “Dynamic Titling,” describes how to dynamically add titles to movies.

Â Chapter 12, “Calling Command-Line Tools,” describes how to access command-line

tools from workflows using the pcastaction command.

Â Chapter 13, “Integrating with Custom Scripts,” describes how to add custom

functionality to workflows through shell scripts.

8 Preface About This Guide

Â Chapter 14, “Tips for Designing and Developing Workflows,” provides tips for

designing and developing Podcast Producer workflows.

Â Chapter 15, “Debugging Workflows,” describes tools and techniques for debugging

workflows.

Note: Because Apple periodically releases new versions and updates to its software,

images shown in this book may be different from what you see on your screen.

Using Onscreen Help
You can get task instructions onscreen in the Help Viewer application while you’re

managing Leopard Server. You can view help on a server or an administrator computer.

(An administrator computer is a Mac OS X computer with Leopard Server

administration software installed on it.)

To get help for an advanced configuration of Leopard Server:

m Open Server Admin or Workgroup Manager and then:

Â Use the Help menu to search for a task you want to perform.

Â Choose Help > Server Admin Help or Help > Workgroup Manager Help to browse

and search the help topics.

The onscreen help contains instructions taken from Server Administration and other

advanced administration guides described in “Mac OS X Server Administration Guides,”

next.

To see the most recent server help topics:

m Make sure the server or administrator computer is connected to the Internet while

you’re getting help.

Help Viewer automatically retrieves and caches the most recent server help topics from

the Internet. When not connected to the Internet, Help Viewer displays cached help

topics.

Mac OS X Server Administration Guides
Getting Started covers basic installation and initial setup methods for an advanced

configuration of Leopard Server as well as for a standard or workgroup configuration.

An advanced guide, Server Administration, covers advanced planning, installation, setup,

and more. A suite of additional guides, listed below, covers advanced planning, setup,

and management of individual services. You can get these guides in PDF format from

the Mac OS X Server documentation website:

Preface About This Guide 9

www.apple.com/server/documentation

This guide ... tells you how to:

Getting Started and

Mac OS X Server Worksheet

Install Mac OS X Server and set it up for the first time.

Command-Line Administration Install, set up, and manage Mac OS X Server using UNIX command-

line tools and configuration files.

File Services Administration Share selected server volumes or folders among server clients

using the AFP, NFS, FTP, and SMB protocols.

iCal Service Administration Set up and manage iCal shared calendar service.

iChat Service Administration Set up and manage iChat instant messaging service.

Mac OS X Security Configuration Make Mac OS X computers (clients) more secure, as required by

enterprise and government customers.

Mac OS X Server Security

Configuration

Make Mac OS X Server and the computer it’s installed on more

secure, as required by enterprise and government customers.

Mail Service Administration Set up and manage IMAP, POP, and SMTP mail services on the

server.

Network Services Administration Set up, configure, and administer DHCP, DNS, VPN, NTP, IP firewall,

NAT, and RADIUS services on the server.

Open Directory Administration Set up and manage directory and authentication services, and

configure clients to access directory services.

Podcast Producer Administration Set up and manage Podcast Producer service to record, process,

and distribute podcasts.

Print Service Administration Host shared printers and manage their associated queues and print

jobs.

QuickTime Streaming and

Broadcasting Administration

Capture and encode QuickTime content. Set up and manage

QuickTime streaming service to deliver media streams live or on

demand.

Server Administration Perform advanced installation and setup of server software, and

manage options that apply to multiple services or to the server as a

whole.

System Imaging and Software

Update Administration

Use NetBoot, NetInstall, and Software Update to automate the

management of operating system and other software used by

client computers.

Upgrading and Migrating Use data and service settings from an earlier version of

Mac OS X Server or Windows NT.

User Management Create and manage user accounts, groups, and computers. Set up

managed preferences for Mac OS X clients.

Web Technologies Administration Set up and manage web technologies, including web, blog,

webmail, wiki, MySQL, PHP, Ruby on Rails, and WebDAV.

Xgrid Administration and High

Performance Computing

Set up and manage computational clusters of Xserve systems and

Mac computers.

Mac OS X Server Glossary Learn about terms used for server and storage products.

http://www.apple.com/server/documentation/

10 Preface About This Guide

Viewing PDF Guides Onscreen
While reading the PDF version of a guide onscreen:

Â Show bookmarks to see the guide’s outline, and click a bookmark to jump to the

corresponding section.

Â Search for a word or phrase to see a list of places where it appears in the document.

Click a listed place to see the page where it occurs.

Â Click a cross-reference to jump to the referenced section. Click a web link to visit the

website in your browser.

Printing PDF Guides
If you want to print a guide, you can take these steps to save paper and ink:

Â Save ink or toner by not printing the cover page.

Â Save color ink on a color printer by looking in the panes of the Print dialog for an

option to print in grays or black and white.

Â Reduce the bulk of the printed document and save paper by printing more than one

page per sheet of paper. In the Print dialog, change Scale to 115% (155% for Getting

Started). Then choose Layout from the untitled pop-up menu. If your printer supports

two-sided (duplex) printing, select one of the Two-Sided options. Otherwise, choose

2 from the Pages per Sheet pop-up menu, and optionally choose Single Hairline from

the Border menu. (If you’re using Mac OS X v10.4 or earlier, the Scale setting is in the

Page Setup dialog and the Layout settings are in the Print dialog.)

You may want to enlarge the printed pages even if you don’t print double sided,

because the PDF page size is smaller than standard printer paper. In the Print dialog or

Page Setup dialog, try changing Scale to 115% (155% for Getting Started, which has CD-

size pages).

Getting Documentation Updates
Periodically, Apple posts revised help pages and new editions of guides. Some revised

help pages update the latest editions of the guides.

Â To view new onscreen help topics for a server application, make sure your server or

administrator computer is connected to the Internet and click “Latest help topics” or

“Staying current” in the main help page for the application.

Â To download the latest guides in PDF format, go to the Mac OS X Server

documentation website:

www.apple.com/server/documentation

http://www.apple.com/server/documentation/

Preface About This Guide 11

Getting Additional Information
For more information, consult these resources:

Â Read Me documents—important updates and special information. Look for them on

the server discs.

Â Mac OS X Server website (www.apple.com/server/macosx)—gateway to extensive

product and technology information.

Â Mac OS X Server Support website (www.apple.com/support/macosxserver)—access to

hundreds of articles from Apple’s support organization.

Â Apple Training website (www.apple.com/training)—instructor-led and self-paced

courses for honing your server administration skills.

Â Apple Discussions website (discussions.apple.com)—a way to share questions,

knowledge, and advice with other administrators.

Â Apple Mailing Lists website (www.lists.apple.com)—subscribe to mailing lists so you

can communicate with other administrators using email.

http://www.apple.com/server/macosx/
http://www.apple.com/server/macosx/
http://www.apple.com/support/macosxserver/
http://www.apple.com/support/macosxserver/
http://www.apple.com/training/
http://www.apple.com/training/
http://discussions.apple.com/
http://discussions.apple.com/
http://www.lists.apple.com/
http://www.lists.apple.com/

12 Preface About This Guide

1

 13

1 Introduction

Before you start working on this tutorial, read this chapter to
get more information about the tutorial.

This tutorial takes you step by step through creating a Podcast Producer workflow.

Rather than creating the workflow in one shot, this tutorial starts by stepping you

through creating a simple Hello World! workflow in the next chapter. Then, in every

subsequent chapter, this tutorial shows how to expand the workflow until it is

complete.

This incremental approach to building a workflow helps you understand the different

aspects of workflow development and shows you the recommended way to build a

workflow.

Before You Start
Before you start working through this tutorial, do the following:

Â Set up a Podcast Producer server, as described in Podcast Producer Administration.

Â Familiarize yourself with workflows and how they work, as described in Podcast

Producer Administration.

Â Verify that your Podcast Producer server is set up properly, by using Podcast Capture

on a Mac OS X v10.5 client computer to submit video using some of the default

workflows that ship with Podcast Producer.

14 Chapter 1 Introduction

The Workflow at a Glance
The following task dependency graph shows you the order of task execution and task

dependencies in the workflow you’ll be building in this tutorial.

The following is a description of the tasks you’ll be adding to the workflow.

Preflight

Text2Speech Watermark Title

Join Audio Lower Third

Encode Audio Encode iPod

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Intro

Publish to

Web Server

Publish to

Web Server

Task Description

Preflight Runs the preflight script specified in Server Admin > Podcast Producer >

Settings > Properties. The goal of this script is to allow you to perform any

necessary actions before running the other tasks in the workflow.

This task is the start node of your task dependency graph.

Text2Speech Converts the title of the input movie to speech, which is later added to an

audio-only version of the movie.

Watermark Adds a watermark to the input movie.

Chapter 1 Introduction 15

Downloading the Workflow Tutorial Files
You can download the finished workflow bundles and the Lower Third.qtz Quartz

composition file used in this tutorial from http://connect.apple.com.

To download the tutorial files:

1 Go to http://connect.apple.com.

2 If you have an Apple Developer Connection (ADC) account, enter your Apple ID and

password in the relevant fields and click Login.

3 If you don’t have an ADC account, click Join Now to create a new account, and then log

in.

4 Click Downloads.

5 In the Downloads list on the right, click Mac OS X Server.

6 In the Podcast Producer Workflow Tutorial section, click Podcast Producer Workflow

Tutorial (Disk Image) to download the tutorial files.

7 Open the disk image and store the files on your hard drive.

Lower Third Applies the lower third Quartz Composer composition to the watermarked

movie.

Title Renders the title of the submitted movie into a predefined intro movie.

Join Audio Adds the audio produced by the Text2Speech task to the audio version of

the submitted video.

Intro Adds the intro video containing the title of the movie to the watermarked

version of the submitted movie.

Encode Audio Encodes the audio before it is published.

Encode iPod Encodes the movie that will be published for playing on iPods.

Publish to Web Server Publishes the audio and video produced by the workflow into a Web server.

Blog Template Customizes the template of the blog where the audio and video will be

posted.

Post to Blog Posts the audio and video to a blog.

Email Template Customizes the template of the email that will be sent to notify users about

the availability of the podcasts.

Send Email Sends notification email.

Postflight Runs the postflight script specified in Server Admin > Podcast Producer

> Settings > Properties. The goal of this script is to allow you to perform any

necessary actions after running the main workflow tasks.

This task is the end node of your task dependency graph.

The default postflight script deletes all temporary files created by the

workflow.

Task Description

16 Chapter 1 Introduction

The workflow bundles are:

Â Workflow 0.pwf

Â Workflow 1.pwf

Â Workflow 2.pwf

Â Workflow 3.pwf

Â Workflow 4.pwf

Â Workflow 5.pwf

Â Workflow 6.pwf

Â Workflow 7.pwf

Â Workflow 8.pwf

Â Workflow 9.pwf

Â Workflow 10.pwf

Â Workflow 11.pwf

Â Workflow Final.pwf

You can use the finished workflows to copy content to the workflows you develop in

this tutorial to save time and minimize typing mistakes.

Additional Sources of Information
For information about Quartz Composer, see:

http://developer.apple.com/documentation/GraphicsImaging/Conceptual/

QuartzComposer/qc_intro/chapter_1_section_1.html

For information about the concept of bundles in Mac OS X, see:

http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles/

CFBundles.html

For information about YAML Ain’t Markup Language (YAML™), see:

http://www.yaml.org

For information about Embedded Ruby (ERB), see:

http://ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

http://developer.apple.com/documentation/GraphicsImaging/Conceptual/QuartzComposer/qc_intro/chapter_1_section_1.html
http://ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles/CFBundles.html
www.yaml.org

2

 17

2 About Workflow Templates

This chapter provides an overview of workflow templates.

As described in Podcast Producer Administration, a workflow template is an Xgrid batch

job specification. It tells the Xgrid controller which tasks to execute and the order of

their execution.

An Xgrid batch job specification is a property list (plist) formatted in ASCII or XML.

Podcast Producer workflows ship in XML format, because it’s the most common format.

However, in this tutorial you’ll use the ASCII format when developing workflows,

because it’s easier to read.

For more information about plist formats, see http://developer.apple.com/

documentation/Cocoa/Conceptual/PropertyLists/PropertyLists.html.

The name of the workflow template is always template.plist and the template is in the

Resources folder of the workflow bundle (for example, Workflow 1.pwf/Contents/

Resources/).

Workflow Variables
The template includes workflow variables (strings enclosed between pairs of $$

characters). The Podcast Producer server replaces these variables with their

corresponding values at runtime.

Some of the variables used in workflows represent workflow properties generated at

runtime by Podcast Producer. The other variables represent workflow properties whose

values you can set using Server Admin.

The values of all variables used in a workflow, whether they represent those properties

generated at runtime or the properties defined in Server Admin, are defined in the

properties.plist file, a temporary file that Podcast Producer stores in the Recording

folder for a job submission.

http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/PropertyLists.html

18 Chapter 2 About Workflow Templates

Workflow Tasks
A workflow task consists of a UNIX shell script and the arguments the script takes, as in

the following example, which describes the preflight task:
preflight = {

// The UNIX shell script to run

command = "/usr/bin/pcastaction";

// The arguments to pass to the script

arguments = (

preflight,

"--basedir=$$Base Directory$$"

);

};

In this example, the pcastaction shell script provided by Podcast Producer runs the

preflight shell script and passes it an argument specifying the location of the Podcast

Producer base directory. The equivalent shell command looks like:

/usr/bin/pcastaction preflight --basedir /Volumes/Data/SFS/Recordings/

3D994F4E-549A-41CF-BC62-F8E2DADB90B1

In this example, the based directory (represented by $$Base Directory$$) is

/Volumes/Data/SFS/Recordings/3D994F4E-549A-41CF-BC62-F8E2DADB90B1.

Although you can redefine the task to run the preflight script directly, it’s better to

run it through pcastaction. The pcastaction script wraps the preflight script and

knows how to set the relevant environment variables and specify the working

directory. In addition, pcastaction knows how to translate error codes and correctly

pass them to workflow tasks. This is true not only for preflight, but also for all the

other subcommands of pcastaction.

Contents of a Workflow Template
Each workflow template contains the following entries:

Key Description

name Specifies the name of the Xgrid job.

notificationEmail Specifies the Xgrid job notification email. The Xgrid controller sends

notification email to the address specified by this key whenever the job

changes state (Running, Failure, or Finished).

artSpecifications Specifies the arguments that are passed to the Agent Ranking Tool (ART)

script used by the Xgrid controller to determine the machines on which

the Xgrid job can run.

Chapter 2 About Workflow Templates 19

About the art.rb Script
The art.rb Ruby script (in Workflow 1.pwf/Contents/Resources/Tools/) determines

whether to run a task on an Xgrid agent. This is called Xgrid scoring. The art.rb script

used in the default Podcast Producer workflows runs tasks on Xgrid agents running

Mac OS X v10.5 or Mac OS X Server v10.5.

Important: To avoid unexpected results, do not edit the art.rb file unless you know

how to perform Xgrid scoring. To learn more about Xgrid scoring, see the xgrid man

page.

The default art.rb script contains the following Ruby code:

#!/usr/bin/env ruby

ENV['PATH'] = '/bin:/usr/bin'

begin

 # Check for Leopard.

 os_vers = `/usr/bin/sw_vers -productVersion`.chomp

 if (!os_vers.match("10.5"))

 raise "Requires Leopard"

 end

artConditions Specifies the conditions for running the job on an Xgrid agent.

In the workflows that ship with Mac OS X Server v10.5, the value of this

key is {0 = {artEqual = 1; }; }.

This condition indicates that the Xgrid job can run only on an Xgrid

agent where running the art.rb script (in Workflow 1.pwf/Contents/

Resources/Tools/) returns 1.

For every condition specified by this key, the number on the left side (in

this case 0) must map to one of the arguments specified by the

artSpecifications key.

In most cases, you won’t need to change this key. For more information,

see Podcast Producer Administration.

taskSpecifications Specifies the tasks that are executed by the workflow.

Key Description

template.plist

...

artSpecifications = {

 0 = {

 artPath = "$$Workflow Resource Path$$/Tools/art.rb";

 artArguments = ("$$Shared Filesystem$$", "$$Server UUID$$");

 };

};

artConditions = {0 = {artEqual = 1; }; };

...

20 Chapter 2 About Workflow Templates

 # Check shared filesystem.

 shared_filesystem = ARGV[0]

 server_uuid = ARGV[1]

 if (!shared_filesystem || !server_uuid)

 raise "Usage: art.rb <shared_filesystem> <server_uuid>"

 end

 if (!File.exist?(shared_filesystem))

 raise "Shared file system does not exist"

 end

 info_path = File.join(shared_filesystem, "pcastserverd.plist")

 if (!File.exist?(info_path))

 raise "#{info_path} does not exist"

 end

 info = IO.read(info_path)

 if (!info.match(server_uuid))

 raise "#{info_path} does not contain #{server_uuid}"

 end

 puts "{ artScore = 1; }" # Success

rescue => boom

 puts "{ artScore = 0; reason = \"#{boom}\"; }" # Failure

end

3

 21

3 Hello World!

In this chapter, you’ll learn how to create a simple workflow.

In this chapter, you’ll create the Hello World! workflow, which sends email containing

the message Hello World! to a list of recipients.

The Workflow at a Glance
The Hello World! workflow consists of the following tasks:

Workflow 1 Setup Summary
To create Workflow 1, you’ll perform the following tasks:

1 Create the workflow bundle (page 22).

2 Configure localized workflow metadata (see page 22).

3 Configure general workflow metadata (page 23).

4 Modify license information (page 24).

5 Configure the workflow template (page 24).

6 Configure workflow properties in Server Admin (page 26).

Preflight

Send Email

Postflight

22 Chapter 3 Hello World!

Setting Up Workflow 1

Step 1: Create the Workflow Bundle

The first step when creating a workflow is to create the workflow bundle in which you’ll

store the workflow files.

The following illustration shows the contents of the workflow bundle you’ll be creating.

You can either create the workflow bundle from scratch or copy an existing bundle and

modify it to suit your needs. The latter approach is preferable because it is faster.

To create the Hello World! bundle:

1 If you haven’t downloaded the finished workflow bundle, see “Downloading the

Workflow Tutorial Files” on page 15 for downloading instructions.

2 Make a copy of Workflow 0.pwf.

This is a starter bundle that you can use to create a new workflow.

3 Rename the bundle to Workflow 1.pwf.

Step 2: Configure Localized Workflow Metadata

The InfoPlist.strings file (in Workflow 1.pwf/Contents/Resources/en.lproj/) contains the

localized versions of keys in the Info.plist file (in Workflow 1.pwf/Contents/).

Each entry in InfoPlist.strings ends with a semicolon and consists of key-value pairs

separated by equal signs. For example, the key in the following entry is Name and the

value is "Workflow 1".

Name = "Workflow 1";

Chapter 3 Hello World! 23

Each key in InfoPlist.strings must map to a key in Info.plist. For example, as shown

below, the Name key in InfoPlist.strings maps to the CFBundleDisplayName key in

Info.plist. The value of the CFBundleDisplayName key is equal to the name of the

corresponding key in InfoPlist.strings.

In addition to key-value pairs, you can add comments to InfoPlist.strings, which is

always recommended. If you add comments, enclose them between the /* and */

characters. Or use a pair of // characters in front of each line of comments.

To configure workflow localization information:

1 Open InfoPlist.strings.

This file stores the localized versions of keys in the Info.plist file (in Workflow 1.pwf/

Contents/).

2 Replace the contents of the Info.plist file with the following entries:

Copyright = "Copyright © 2008, Apple Inc., All Rights Reserved.";

Name = "Workflow 1";

Description = "This workflow sends an email.";

The values of the three keys appear in Server Admin and Podcast Capture when you

request more information about a workflow.

3 Save the file.

Step 3: Configure General Workflow Metadata

In addition to configuring the localized workflow information, you should also

configure the general workflow information, which is stored in the Info.plist file.

To configure general workflow information:

1 Open Info.plist (in Workflow 1.pwf/Contents/) using Property List Editor.

2 Set the value of the CFBundleName key to Workflow 1.

The CFBundleName key defines the name of the workflow, which appears in Server

Admin and Podcast Capture.

3 Set the value of the CFBundleIdentifier key to

com.apple.PodcastProducer.workflow.Workflow_1.

Info.plist

...

<key>CFBundleDisplayName</key>

<string>Name</string>

<key>CFBundleGetInfoString</key>

<string>Description</string>

<key>NSHumanReadableCopyright</key>

<string>Copyright</string>

...

InfoPlist.strings

...

Name = "Workflow 1";

Description = "This workflow...";

Copyright = "Copyright © 2008...";

...

24 Chapter 3 Hello World!

4 Save the Info.plist file.

Step 4: Modify License Information

Because you’re using an existing workflow that was provided by Apple, you don’t need

to modify the licence information contained in the LICENSE file (in Workflow 1.pwf/

Contents/).

However, when you create your own workflow, make sure you replace the copyright

information contained in the file with your own.

Step 5: Configure the Workflow Template

The most important step when creating a workflow is to create the workflow template

and define the tasks that the workflow will run.

To configure the workflow template:

1 Open the workflow template template.plist.

2 Delete the contents of the file.

3 Add content to the workflow template.

(

 {

name = "$$Xgrid Job Name$$";

notificationEmail = "$$Administrator Email Address$$";

artSpecifications = {

 0 = {

 artPath = "$$Workflow Resource Path$$/Tools/art.rb";

 artArguments = ("$$Shared Filesystem$$", "$$Server UUID$$");

 };

 };

 artConditions = {0 = {artEqual = 1; }; };

 taskSpecifications

 // Define the preflight task.

 // In this case, the workflow uses the default preflight script,

 // which doesn’t do anything.

 preflight = {

// Specify the command to run.

command = "/usr/bin/pcastaction";

arguments = (

// Run the preflight script specified in Server Admin

// Podcast Producer > Settings > Properties.

preflight,

Chapter 3 Hello World! 25

// All pcastaction commands take the --basedir argument.

// This argument defines the directory where all the

// work happens and where temporary files are stored.

// This directory is located in the Recordings folder on

// the shared file system.

"--basedir=$$Base Directory$$"

);

 };

 // Define the email task. This task sends an email to the

 // specified email address.

 email = {

 // The email runs only after the preflight task has

 // successfully completed running. If there is no dependency,

 // the task runs as soon as possible.

 dependsOnTasks = (preflight);

 command = "/usr/bin/pcastaction";

 arguments = (

// Run the mail subcommand of pcastaction.

mail,

"--basedir=$$Base Directory$$",

// Specify the mail sender.

"--from=$$User Email Address$$",

// Specify the mail recipients.

"--to=$$Audience Email List$$, $$User Email Address$$,

$$Administrator Email Address$$",

// Specify the address of the outgoing SMTP mail server.

"--smtp=$$SMTP Server$$",

// Set the mail’s subject to Hello World!.

"--body=Subject:Hello World!"

);

 };

 // Define the postflight task.

 // The default postflight script erases all temporary files.

 postflight = {

 dependsOnTasks = (email);

 command = "/usr/bin/pcastaction";

 arguments = (

 postflight,

 "--basedir=$$Base Directory$$"

);

 };

};

}

)

4 Save and close the template.plist file.

26 Chapter 3 Hello World!

Step 6: Configure workflow properties in Server Admin

Before you can deploy the workflow, you need to define the values of the customizable

workflow properties used in the workflow template. These are the properties that you

can set using Server Admin:

Â Audience Email List—A list of SMS recipients of new podcast announcements from

Podcast Producer.

Â SMTP Server—The host name of an SMTP mail server used by workflows to send mail

notifications.

To define variable values:

1 Open Server Admin.

2 In the Computers and Services list, select Podcast Producer.

3 Click Settings.

4 Click Properties.

5 Set the values for the following variables:

Â Audience Email List

Â SMTP Server

6 Click Save.

The other variables used in the workflow represent metadata that Podcast Producer

generates at run time:

Â Administrator Email Address

Â Base Directory

Â Workflow Resource Path

Â Shared Filesystem

Â Server UUID

Â User Email Address

Â Xgrid Job Name

Validating the Workflow
Podcast Producer provides the pcastconfig command located at /usr/bin/, which lets

you validate workflows before running them.

To validate Workflow 1:

m Enter the following command:

$ sudo /usr/bin/pcastconfig --validate_workflow_at_path /Library/

PodcastProducer/Workflows/Workflow\ 1.pwf

Workflow: /Library/PodcastProducer/Workflows/Workflow 1.pwf is VALID

Chapter 3 Hello World! 27

Deploying the Workflow
To deploy the Hello World! workflow, you must make sure that it is accessible from your

test system.

To deploy the Hello World! workflow:

1 Move Workflow 1.pwf to /Library/PodcastProducer/Workflows/ on your server.

2 Open Server Admin.

3 In the Computers and Services list, select Podcast Producer.

4 Click Workflows.

5 Select the workflow in the Workflow list.

6 Click “Allow access to workflow name for all users and groups.”

Testing the Workflow
After deploying the Hello World! workflow, test it.

To test the Hello World! workflow:

1 On a Mac running Mac OS X v10.5 that’s connected to the same network as your

Podcast Producer server, launch Podcast Capture (in /Applications/Utilities/).

2 Log in to the Podcast Producer server as pcastuser.

3 Select File and choose a very small QuickTime movie.

Even though your workflow doesn’t process QuickTime movies, the only way you can

run a workflow is by submitting a recording and submitting audio, video, or screen

activity, or by uploading a QuickTime movie for processing.

4 From the Workflow pop-up menu, select the Hello World! workflow and give the movie

a title and description.

5 Click Done.

After the movie is uploaded to the shared file system, Podcast Producer executes the

workflow, which in this case doesn’t do anything with the movie.

After a short period of time, the mail recipients you specified in Server Admin should

receive a mail message with Hello World! in the subject field. The body of the message

should be empty.

If you don’t receive mail notification, go over the instructions in this chapter to make

sure that you haven’t missed a step.

Important: In this chapter, for simplicity, you didn’t apply the proper formatting to the

mail message. In some cases, an improperly formatted mail message might get lost

because a mail server won’t be able to parse it correctly. Later in this tutorial, you’ll

learn the proper way to format mail messages.

28 Chapter 3 Hello World!

4

 29

4 Encoding Media

Create a workflow that encodes and publishes media.

In this chapter, you’ll expand the Hello World! workflow by adding two tasks to it to

encode and publish submitted media.

The Workflow at a Glance
The Encoding Media workflow consists of the following tasks:

In this chapter, you’ll expand on Workflow 1 by:

Â Adding the following tasks:

Â Encode iPod

Â Publish to Web Server

Â Modifying the Send Email task

Preflight

Encode iPod

Send Email

Postflight

Publish to

Web Server

30 Chapter 4 Encoding Media

Workflow 2 Setup Summary
Having successfully deployed and tested the Hello World! workflow, you can use it as

the starting point for the workflow you’ll create in this chapter. The new workflow

expands on the Hello World! workflow by adding two new tasks.

To edit property lists, use your favorite text editor or Property List Editor.

To create Workflow 2, you’ll perform the following tasks:

1 Create the workflow bundle (page 30).

2 Configure the workflow metadata (see page 30).

3 Configure the workflow template (page 31).

4 Configure workflow properties in Server Admin (page 33).

Setting Up Workflow 2

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 1.pwf and change the

name to Workflow 2.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 2.pwf bundle (by Control-clicking the bundle and choosing Show

Package Contents).

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_2.

Â Set CFBundleName to Workflow 2.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 2";

Description = "Here we added encoding the input video to the iPod format.";

Chapter 4 Encoding Media 31

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the encode_ipod task

after the preflight task:

// Take input movie and transcode it to an iPod Video format.

encode_ipod = {

// This task runs as soon as the preflight script finishes running.

dependsOnTasks = (preflight);

command = "/usr/bin/pcastaction";

arguments = (

// Run the encode subcommand of pcastaction.

// For more information, run “pcastaction help encode.”

encode,

"--basedir=$$Base Directory$$",

// Path to input file (relative to the Base Directory)

"--input=$$Content File Basename$$$$Content File Extension$$",

// Path to output file (relative to the Base Directory)

"--output=$$Content File Basename$$-ipod.m4v",

// Specify the encoding setting to use (iPod format).

"--encoder=ipod"

);

};

You can place the task anywhere in the taskSpecifications section. The Xgrid

controller determines the execution order based on task dependency.

3 In the taskSpecifications section of the workflow template, add the publish_ipod

task after the encode_ipod task:

// Copy the encoded video file produced by encode_ipod to the Web server.

publish_ipod = {

// This task runs right after encode_ipod finishes running.

dependsOnTasks = (encode_ipod);

command = "/usr/bin/pcastaction";

arguments = (

// Run the publish subcommand of pcastaction.

// For more information, run “pcastaction help publish.”

publish,

"--basedir=$$Base Directory$$",

// Web Doc Root

"--web_root=$$Web Document Root$$",

// Web URL

"--web_url=$$Web URL$$",

// Date of posting

32 Chapter 4 Encoding Media

"--date=$$Date_YYYY-MM-DD$$",

// Podcast title

"--title=$$Title$$",

// String representing the published format

"--format=ipod",

// MIME type of movie being published

"--type=video/mp4",

// File to be pushed to the Web Server (copied to Web Doc Root)

"--file=$$Content File Basename$$-ipod.m4v",

// The YAML file containing information about published podcast

"--outfile=ipod_publish_description_file.yaml"

);

};

The publish_ipod task writes out a YAML file containing information about the

published file, including the full URL to the content. For more information about YAML,

see www.yaml.org.

4 Modify the email task as follows:

email = {

// Change dependency. Now, this task executes after publish_ipod is done.

dependsOnTasks = (publish_ipod);

command = "/usr/bin/pcastaction";

arguments = (

mail,

"--basedir=$$Base Directory$$",

"--from=$$User Email Address$$",

"--to=$$Audience Email List$$, $$User Email Address$$,

$$Administrator Email Address$$",

"--smtp=$$SMTP Server$$",

// Specify message’s contents.

"--body_file=ipod_publish_description_file.yaml"

);

};

For now, just mail the contents of the YAML file. However, later in this guide, you’ll learn

how to properly format mail messages. Mail messages must be properly escaped to be

valid. If not, some mail servers might not process the message, which causes the task to

fail.

5 Save and close the template.plist file.

www.yaml.org
www.yaml.org

Chapter 4 Encoding Media 33

Step 4: Configure workflow properties in Server Admin

Before you can deploy the workflow, define the values of the workflow properties used

in the workflow template. For Workflow 2, you need to define the values of the

$$Web Document Root$$ and $$Web URL$$ variables.

To define variable values:

1 In Server Admin, set values for the following workflow properties:

Â Web Document Root—The web server root folder on the shared file system where

new podcast streams are published.

Â Web URL—The base URL of the web server where podcasts are published.

2 Click Save.

Podcast Producer gets the values of other $$ variables from the metadata stored in the

properties.plist file.

Getting Information About the pcastaction Command
To get information about the pcastaction command, see its man page:

$ man pcastaction

…

SYNOPSIS

pcastaction command [options] [args]

OVERVIEW

The pcastaction tool is a tool built to facilitate writing Podcast

Producer workflows. It wraps a large set of commands needed for

creating video or audio podcasts. Actions include annotating QuickTime

movies, video editing, sending emails, posting blog entries.

The available subcommands are:

unpack

shell

preflight

postflight

encode

annotate

qceffect

watermark

title

merge

iTunes

iTunesU

mail

archive

publish

groupblog

template

34 Chapter 4 Encoding Media

approval

Run `pcastaction help` to access the built-in tool documentation. You

can also run `pcastaction <subcommand> help` for more information about

the different commands.

To get information about pcastaction subcommands, use the following command:

pcastaction help subcommand

For example, to display information about the encode subcommand, enter:

$ pcastaction help encode

…

Podcast Producer action task, version 0.1

…

encode: transforms the input file to the output file with the specified

encoder usage: encode --basedir=BASEDIR --input=INPUT --output=OUTPUT

--encoder=ENCODER

the available encoders are:

3gpp2_ezmovie

3gpp2_release_A

3gpp2_release_A_hint

3gpp2_release_A_hint_server

3gpp_mobile_mp4

3gpp_mobile_mp4_hint

3gpp_mobile_mp4_hint_server

3gpp_release_5

3gpp_release_5_hint

3gpp_release_5_hint_server

amc_ezmovie

appletv

avi

avi_1cd

avi_2cd

h264

h264_hint

h264_hint_server

iphone

iphone_cellular

ipod

mp4_audio_high

mp4_audio_low

mp4_high

mp4_lan

mp4_low

mp4_low_stream

mp4_medium

Chapter 4 Encoding Media 35

mp4_medium_stream

Deploying the Workflow
Validate, deploy, and test Workflow 2 to make sure it runs successfully, and then

proceed to the next chapter.

36 Chapter 4 Encoding Media

5

 37

5 Running Tasks in Parallel

Create a workflow that encodes and publishes audio and
video in parallel.

In this chapter, you’ll create a workflow based on the workflow from the last chapter.

You’ll add to it three tasks that run in parallel with similar tasks already in the workflow.

The Workflow at a Glance
The Running Tasks in Parallel workflow consists of the following tasks:

The three new tasks produce an audio-only version of the submitted QuickTime movie,

publish the resulting audio podcast to the web, and send notification email.

Encode Audio Encode iPod

Send Email Send Email

Postflight

Preflight

Publish to

Web Server

Publish to

Web Server

38 Chapter 5 Running Tasks in Parallel

Workflow 3 Setup Summary
In the previous chapter you created Workflow 2, which encodes the submitted video,

publishes the video on a web server, and sends notification email.

Workflow 2, like Workflow 1 (the Hello World! workflow), defines a list of tasks to run

sequentially. However, one the powerful features of workflow templates or Xgrid jobs is

the ability to run tasks in parallel by distributing tasks among Xgrid agents if enough

cores are available. Running tasks in parallel reduces the amount of time needed to run

workflows and publish podcasts.

To create Workflow 3, you’ll perform the following tasks:

1 Create the workflow bundle (page 38).

2 Configure the workflow metadata (see page 38).

3 Configure the workflow template (page 39).

Setting Up Workflow 3

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 2.pwf and change the

name to Workflow 3.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 3.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_3.

Â Set CFBundleName to Workflow 3.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 3";

Description = "Here we added encoding the video to an audio-only format.";

Chapter 5 Running Tasks in Parallel 39

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, modify the email task as

follows:

// Change the name of the task.

email_ipod = {

dependsOnTasks = (publish_ipod);

command = "/usr/bin/pcastaction";

arguments = (

mail,

"--basedir=$$Base Directory$$",

"--from=$$User Email Address$$",

"--to=$$Audience Email List$$, $$User Email Address$$,

$$Administrator Email Address$$",

"--smtp=$$SMTP Server$$",

"--body_file=ipod_publish_description_file.yaml"

);

};

3 In the taskSpecifications section of the workflow template, add the encode_audio

task after the email_ipod task:

// Take the input movie and transcode it to an audio-only format.

encode_audio = {

// This task, like encode_ipod, also depends on the preflight script.

// If your Xgrid has enough open CPUs, it can schedule this encoding in

// parallel with the encode_ipod task.

dependsOnTasks = (preflight);

command = "/usr/bin/pcastaction";

arguments = (

// The arguments here are very similar to those of the encode_ipod

// task, except for the encoding format (mp4_audio_high).

encode,

"--basedir=$$Base Directory$$",

"--input=$$Content File Basename$$$$Content File Extension$$",

"--output=$$Content File Basename$$-audio.m4a",

// The encoding setting to use (MPEG-4 high quality audio format)

"--encoder=mp4_audio_high"

);

};

40 Chapter 5 Running Tasks in Parallel

4 In the taskSpecifications section of the workflow template, add the publish_audio

task after the encode_audio task:

// Copy the encoded audio file produced by encode_audio to the Web server.

publish_audio = {

dependsOnTasks = (encode_audio);

command = "/usr/bin/pcastaction";

arguments = (

publish,

"--basedir=$$Base Directory$$",

"--web_root=$$Web Document Root$$",

"--web_url=$$Web URL$$",

"--date=$$Date_YYYY-MM-DD$$",

"--title=$$Title$$",

// String representing the published format

"--format=audio",

// MIME type of audio being published

"--type=audio/mp4a-latm",

// File to be pushed to the Web Server (copied to Web Doc Root)

"--file=$$Content File Basename$$-audio.m4a",

// The YAML file containing information about published podcast

"--outfile=audio_publish_description_file.yaml"

);

};

5 In the taskSpecifications section of the workflow template, add the email_audio task

after the publish_audio task:

// Send a mail notification when the audio podcast is available online.

email_audio = {

dependsOnTasks = (publish_audio);

command = "/usr/bin/pcastaction";

arguments = (

mail,

"--basedir=$$Base Directory$$",

"--from=$$User Email Address$$",

"--to=$$Audience Email List$$, $$User Email Address$$,

$$Administrator Email Address$$",

"--smtp=$$SMTP Server$$",

// Specify the message’s contents.

"--body_file=audio_publish_description_file.yaml"

);

};

Chapter 5 Running Tasks in Parallel 41

6 In the taskSpecifications section of the workflow template, modify the postflight

task as follows:

postflight = {

// This task now depends on both mailing tasks

dependsOnTasks = (email_audio, email_ipod);

command = "/usr/bin/pcastaction";

arguments = (

postflight,

"--basedir=$$Base Directory$$"

);

};

7 Save and close the template.plist file.

Deploying the Workflow
Validate, deploy, and test Workflow 3 to make sure it runs without a problem, and then

proceed to the next chapter.

42 Chapter 5 Running Tasks in Parallel

6

 43

6 Modifying the Mail Template

Create a workflow that properly formats emails.

In the previous three chapters, for simplicity, you sent email notifications without

proper formatting. Now you’ll learn how to use the template subcommand of

pcastaction to properly format mail messages, by creating a new workflow based on

Workflow 3.

Important: An incorrectly formatted message can get lost or end up in the wrong

mailbox.

You’ll also learn how to send one mail message with links to the podcasts, instead of

sending one message for every produced media file as you did in the previous chapter.

The Workflow at a Glance
The Mail Template workflow (Workflow 4) consists of the following tasks:

Encode Audio Encode iPod

Email Template

Send Email

Postflight

Preflight

Publish to

Web Server

Publish to

Web Server

44 Chapter 6 Modifying the Mail Template

In this workflow, you’ll create two new tasks:

Â Email Template—Applies the correct formatting to the mail message

Â Send Email—Sends one message to every recipient

Workflow 4 Setup Summary
Workflow 4 is almost identical to Workflow 3, except for the new Email Template task

and the consolidation of the two mail tasks into one task.

To create Workflow 4, you’ll perform the following tasks:

1 Create the workflow bundle (page 44).

2 Configure the workflow metadata (see page 44).

3 Configure the workflow template (page 45).

4 Write the mail template (page 46).

Setting Up Workflow 4

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 3.pwf and change the

name to Workflow4.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 4.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_4.

Â Set CFBundleName to Workflow 4.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 4";

Description = "Here we use an email template to send one email with the

information gathered from the previous tasks.";

Chapter 6 Modifying the Mail Template 45

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the following task

after the publish_audio task.

// Generate a mail body text file from the template ERB file (mail.txt.erb).

// This task interprets the ERB file in order to generate the mail.txt file.

template_mail = {

dependsOnTasks = (publish_audio, publish_ipod);

command = "/usr/bin/pcastaction";

arguments = (

// Run the template subcommand of pcastaction

template,

"--basedir=$$Base Directory$$",

// Path to ERB template file to be interpreted

"--template=$$Workflow Resource Path$$/Templates/mail.txt.erb",

// Path where the resulting mail file will be written

"--output=mail.txt"

);

};

3 In the taskSpecifications section of the workflow template, add the following task

after the template_mail task:

// The new email task is very similar to the previous ones except for its

// dependency and that we now send the generated body file

email = {

dependsOnTasks = (template_mail);

command = "/usr/bin/pcastaction";

arguments = (

mail,

"--basedir=$$Base Directory$$",

"--from=$$User Email Address$$",

"--to=$$Audience Email List$$, $$User Email Address$$, $$Administrator

Email Address$$",

"--smtp=$$SMTP Server$$",

// Send the mail.txt file generated by the template file

"--body_file=mail.txt"

);

};

4 In the taskSpecifications section of the workflow template, delete the email_ipod

and email_audio tasks.

46 Chapter 6 Modifying the Mail Template

5 In the taskSpecifications section of the workflow template, modify the postflight

task as follows:

postflight = {

// This task now depends on both mailing tasks

dependsOnTasks = (email);

command = "/usr/bin/pcastaction";

arguments = (

postflight,

"--basedir=$$Base Directory$$"

);

};

6 Save and close the template.plist file.

Step 4: Write the Mail Template

To properly format mail messages, you write an Embedded Ruby (ERB) template file,

which generates a formatted mail message that you can send out to recipients.

After you write the file, you’ll add a task that takes this file as input and formats the

mail notification message using the embedded Ruby commands.

In an ERB file:

Â Lines starting with %# are comments.

Â Lines starting with % are Ruby code.

Â A Ruby expression is enclosed between <%= and %>.

For more information about ERB, see:

http://ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

When writing the mail template, you’ll make calls to helper methods defined in the

pcastaction Ruby script located in /usr/bin/. Before you start writing the mail template,

open pcastaction in your favorite text editor and take a look at the ERBContext

module, where the helper methods are defined.

The ERBContext module exposes helper methods that you can call from outside of the

script. In the mail template you create, you’ll use the following helper methods:

Method Description

quotify Adds quotation marks around the input string:

def self.quotify(string)

'"' + string + '"'

end

braketify Adds angle brackets around the input string:

def self.braketify(string)

'<' + string + '>'

end

Chapter 6 Modifying the Mail Template 47

In addition to using helper methods, you can access workflow properties stored by

Podcast Producer from the mail script using the properties keyword.

For example, the following code snippet returns the full name of the Podcast Producer

administrator:

properties["Administrator Email Address"]

To write the mail template:

1 Using your favorite text editor, create the mail.txt.erb file and save it in the workflow’s

Templates folder (Workflow 4.pwf/Contents/Resources/Templates/).

2 Define variables by adding the following lines of Ruby code to mail.txt.erb:

% administrator_full_name = (properties["Administrator Full Name"] || "")

% administrator_email_address = (properties["Administrator Email Address"]

|| "")

% audience_email_address = (properties["Audience Email List"] || "")

% user_full_name = (properties["User Full Name"] || "")

% user_email_address = (properties["User Email Address"] || "")

% title = (properties["Title"] || "")

% seconds_since_epoch = (properties["Recording Started At"] || "").to_i

These lines of code use helper methods defined in the template subcommand of

pcastaction to retrieve property values from the properties.plist file. This is the file

containing all the metadata describing a workflow submission.

emailify Creates a properly formatted mail message from the input strings:

def self.emailify(name, address)

quotify(name) + ' ' + braketify(address)

end

localized_time Produces a time value formatted based on you locale:

def self.localized_time(seconds_since_epoch)

prepare_for_localizing unless @@time_formatter

@@time_formatter.stringFromDate(OSX::NSDate.d

ateWithTimeIntervalSince1970(seconds_since_ep

och)).to_s

end

localized_date Produces a date formatted based on you locale:

def self.localized_date(seconds_since_epoch)

prepare_for_localizing unless @@date_formatter

@@date_formatter.stringFromDate

(OSX::NSDate.dateWithTimeIntervalSince1970

(seconds_since_epoch)).to_s

end

Method Description

48 Chapter 6 Modifying the Mail Template

After receiving a workflow job submission, Podcast Producer generates the

properties.plist file and stores it in the recording folder it created for the workflow

submission.

3 Add the following lines of Ruby code, which use the YAML library to read the YAML files

generated by the publishing tasks:

% ipod_file_url =

((YAML::load_file("ipod_publish_description_file.yaml")[:url] rescue

nil) || "")

% audio_file_url =

((YAML::load_file("audio_publish_description_file.yaml")[:url] rescue

nil) || "")

4 Add the following lines of Ruby code, which use helper methods defined in the

ERBContext of pcastaction to correctly format the different values needed to construct

the email’s header by adding the relevant escape characters:

% from_addresses = [emailify(administrator_full_name,

administrator_email_address)]

% subject_value = "New Episode: #{quotify(title)}"

% to_addresses = [audience_email_address, emailify(user_full_name,

user_email_address), emailify(administrator_full_name,

administrator_email_address)]

%

<%= encoded_header_with_addresses("From", from_addresses) %>

<%= encoded_header_with_value("Subject", subject_value) %>

<%= encoded_header_with_addresses("To", to_addresses) %>

%

The subject value specified in this template (subject_value) appears in the Subject

field.

5 Add the body of the mail message:

A new Podcast episode has been posted!

<%= quotify(title) %> was recorded at

<%= localized_time(seconds_since_epoch) %> on

<%= localized_date(seconds_since_epoch) %>.

Download the episode in the following formats:

iPod video: <%= braketify(ipod_file_url) %>

iPod audio: <%= braketify(audio_file_url) %>

This email was sent by Podcast Producer.

6 Save and close the mail.txt.erb file.

Chapter 6 Modifying the Mail Template 49

Deploying the Workflow
Validate, deploy, and test Workflow 4 to make sure it runs successfully, and then

proceed to the next chapter.

50 Chapter 6 Modifying the Mail Template

7

 51

7 Posting to the Group Blog

Add to the workflow the ability to post to a group blog.

In this chapter you’ll modify the mail template to include a link to the blog posting and

add a task to the workflow to post to the blog.

The Workflow at a Glance
The Group Blog workflow (Workflow 5) consists of the following tasks:

The Blog Template and Post to Blog tasks publish the podcasts to a blog. The Email

Template task sends notification email that includes a link to the blog posting.

Encode Audio Encode iPod

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Preflight

Publish to

Web Server

Publish to

Web Server

52 Chapter 7 Posting to the Group Blog

Workflow 5 Setup Summary
Workflow 5 builds on Workflow 4 by adding the tasks that make it possible to post

processed content to a blog and create an RSS feed.

To create Workflow 5, you’ll perform the following tasks:

1 Create the workflow bundle (page 52).

2 Configure the workflow metadata (see page 52).

3 Configure the workflow template (page 52).

4 Configure workflow properties in Server Admin (page 55).

Setting Up Workflow 5

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 4.pwf and change the

name to Workflow 5.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 5.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_5.

Â Set CFBundleName to Workflow 5.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 5";

Description = "Here we added posting to the group's weblog (we are also

using a template for the posting).";

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, modify the publish_ipod

task as follows:

publish_ipod = {

dependsOnTasks = (encode_ipod);

command = "/usr/bin/pcastaction";

arguments = (

Chapter 7 Posting to the Group Blog 53

publish,

"--basedir=$$Base Directory$$",

"--web_root=$$Web Document Root$$",

"--web_url=$$Web URL$$",

"--date=$$Date_YYYY-MM-DD$$",

"--title=$$Title$$",

"--format=ipod",

"--type=video/mp4",

"--file=$$Content File Basename$$-ipod.m4v",

"--outfile=ipod_publish_description_file.yaml",

// Create a poster image of the video

"--create_poster_image"

);

};

3 In the taskSpecifications section of the workflow template, add the

template_groupblog task after the publish_audio task:

template_groupblog = {

dependsOnTasks = (publish_ipod, publish_audio);

command = "/usr/bin/pcastaction";

arguments = (

template,

"--basedir=$$Base Directory$$",

// Path to ERB template file to be interpreted

 "--template=$$Workflow Resource Path$$/Templates/groupblog.html.erb",

// Path to where the resulting file is written, relative to basedir.

"--output=groupblog.html"

);

};

4 In the taskSpecifications section of the workflow template, add the groupblog task

after the publish_audio task.

// Take the HTML file generated by template_groupblog and post an entry to

// the Group's blog.

groupblog = {

dependsOnTasks = (template_groupblog);

command = "/usr/bin/pcastaction";

arguments = (

// Use the groupblog subcommand of pcastaction.

groupblog,

"--basedir=$$Base Directory$$",

// URL of server hosting the Group blog

"--server_url=$$Groups Web Server URL$$",

"--group=$$Group Short Name$$", // Group's shortname

// Shortname of group administrator

"--username=$$Groups Administrator Username$$",

54 Chapter 7 Posting to the Group Blog

// URL of Podcast Producer server

"--pcast_server=$$Podcast Producer URL$$",

// One time password for credentials to post to blog

"--otp=##Groups Administrator Username:Groups Administrator

Password##",

// The shortname of the user account that the group administrator

// will use for posting content.

"--authorize=$$User Short Name$$",

"--title=$$Title$$",

// HTML file generated by the ERB template

"--content_file=groupblog.html",

"--enclosure_description_file=ipod_publish_description_file.yaml",

"--enclosure_description_file=audio_publish_description_file.yaml",

// Generate an outfile (group_blog_entry_url.txt if nothing is

// specified)

"--outfile"

);

};

5 In the taskSpecifications section of the workflow template, modify the dependency

of the template_mail task as follows:

template_mail = {

// Because the mail notification will includes a line to the blog,

// this task should run only after the blog is posted.

dependsOnTasks = (groupblog);

command = "/usr/bin/pcastaction";

arguments = (

template,

"--basedir=$$Base Directory$$",

"--template=$$Workflow Resource Path$$/Templates/mail.txt.erb",

"--output=mail.txt"

);

};

6 Save and close the template.plist file.

Chapter 7 Posting to the Group Blog 55

Step 4: Configure workflow properties in Server Admin

Before you can deploy the workflow, you need to define the values of the workflow

properties you specified in the workflow template.

To define variable values:

1 In Server Admin, set the values for the following workflow variables:

Â Groups Web Server URL—The base URL of the web server where group blog

announcements about new podcasts are published.

Â Group Short Name—The short name of the group that receives blog

announcements about new podcasts from Podcast Producer.

Â Groups Administrator Username—The short name of the administrator user who is

the group’s owner and can post blogs on behalf of normal users. This user must also

be an administrator on the system running the Web service used by Podcast

Producer to post blogs.

2 Click Save.

Writing a Blog Template
Like the mail template you created in the previous chapter, the blog template you’re

about to create is an ERB file in which you can embed Ruby code.

The blog template will define variables whose values are other variables and methods

defined in the pcastaction Ruby script.

To write the blog template:

1 Using your favorite text editor, create the groupblog.html.erb file and save it in the

workflow’s Templates folder (Workflow 5.pwf/Contents/Resources/Templates/).

2 Define the following variables by adding the following lines of Ruby code to

groupblog.html.erb:

% description = (properties["Description"] || "")

% ipod_publish = ((YAML::load_file("ipod_publish_description_file.yaml")

rescue nil) || {})

% ipod_publish_poster_url = (ipod_publish[:poster_url] || "")

% ipod_publish_url = (ipod_publish[:url] || "")

%

3 Add the following lines of Ruby code, which use the helper methods defined in the

pcastaction script, to define the posting dimensions of the video on the blog (the

maximum width is 480 pixels):

% ipod_publish_width = (ipod_publish[:width].to_i <= 480 ?

ipod_publish[:width].to_i : 480).to_s

% ipod_publish_height = (ipod_publish[:width].to_i <= 480 ?

ipod_publish[:height].to_i : (480.0/

ipod_publish[:width].to_f*ipod_publish[:height].to_f).to_i).to_s

%

56 Chapter 7 Posting to the Group Blog

4 Add the following lines of Ruby code, which use the helper methods defined in the

pcastaction script, to define the HTML block that will be posted to the blog:

<%= h(description) %>

<img src=<%= quotify(ipod_publish_poster_url) %> alt=<%=

quotify(ipod_publish_url) %> width=<%= quotify(ipod_publish_width) %>

height=<%= quotify(ipod_publish_height) %> class="aligncenter

posterimg" />

5 Save and close the groupblog.html.erb file.

Updating the Mail Template
Update the mail.txt.erb file you created in the last chapter, as follows:
%

% administrator_full_name = (properties["Administrator Full Name"] || "")

% administrator_email_address = (properties["Administrator Email Address"]

|| "")

% audience_email_address = (properties["Audience Email List"] || "")

% user_full_name = (properties["User Full Name"] || "")

% user_email_address = (properties["User Email Address"] || "")

% title = (properties["Title"] || "")

% seconds_since_epoch = (properties["Recording Started At"] || "").to_i

%

%# Define variables for use in group blog posting and RSS feed generation.

%# When the workflow posts to the blog, the blog automatically generates an

%# RSS feed.

%

% group_short_name = (properties["Group Short Name"] || "")

% group_full_name = (properties["Group Full Name"] || "")

%

%# The groupblog task generates a text file containing the URL of the post

% group_blog_entry_url = ((IO.read("group_blog_entry_url.txt").chomp rescue

nil) || "")

%

% groups_web_server_url = (properties["Groups Web Server URL"] || "")

% groups_blog_url = groups_web_server_url + '/' + group_short_name + '/blog/

'

% blog_feed_url = groups_blog_url.gsub(/^http/, 'itpc') + 'index.its'

% ipod_blog_feed_url = blog_feed_url + "?mediaTypeTag=ipod"

% audio_blog_feed_url = blog_feed_url + "?mediaTypeTag=audio"

%

% ipod_file_url =

((YAML::load_file("ipod_publish_description_file.yaml")[:url] rescue

nil) || "")

% audio_file_url =

((YAML::load_file("audio_publish_description_file.yaml")[:url] rescue

nil) || "")

Chapter 7 Posting to the Group Blog 57

% from_addresses = [emailify(administrator_full_name,

administrator_email_address)]

%

%# Modify the mail’s subject to contain a reference to the group name.

% subject_value = "New Episode in #{group_full_name} Wiki group:

#{quotify(title)}"

%

% to_addresses = [audience_email_address, emailify(user_full_name,

user_email_address), emailify(administrator_full_name,

administrator_email_address)]

%

<%= encoded_header_with_addresses("From", from_addresses) %>

<%= encoded_header_with_value("Subject", subject_value) %>

<%= encoded_header_with_addresses("To", to_addresses) %>

New Podcast Episode in <%= group_full_name %> Wiki group

<%= quotify(title) %> was recorded at <%=

localized_time(seconds_since_epoch) %> on <%=

localized_date(seconds_since_epoch) %>:

<%= braketify(group_blog_entry_url) %>

%# Add a link to the blog

This episode has been published to the <%= group_full_name %> blog:

<%= braketify(groups_blog_url) %>

%# Add links to the RSS feeds to allow recipients to directly subscribe

%# to the feed from the mail message.

Subscribe in iTunes:

iPod video: <%= braketify(ipod_blog_feed_url) %>

iPod audio: <%= braketify(audio_blog_feed_url) %>

Download the episode in the following formats:

iPod video: <%= braketify(ipod_file_url) %>

iPod audio: <%= braketify(audio_file_url) %>

This email was sent by Podcast Producer.

Deploying the Workflow
Deploy Workflow 5 and test it to make sure it runs without a problem, and then

proceed to the next chapter.

58 Chapter 7 Posting to the Group Blog

8

 59

8 Watermarking

Add a task that superimposes a watermark on the input
movie.

To add a watermark, you’ll use the watermark subcommand of pcastaction.

The Workflow at a Glance
The Watermarking workflow (Workflow 6) consists of the following tasks:

Encode Audio Encode iPod

Watermark

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Preflight

Publish to

Web Server

Publish to

Web Server

60 Chapter 8 Watermarking

Workflow 6 Setup Summary
Workflow 6 builds on Workflow 5 by adding a task that adds a watermark to the

submitted video, and by modifying the dependency of the encode_ipod task that

processes the watermarked video.

To create Workflow 6, you’ll perform the following tasks:

1 Create the workflow bundle (page 60).

2 Configure the workflow metadata (see page 60).

3 Create a watermark (see page 60).

4 Configure the workflow template (page 60).

Setting Up Workflow 6

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 5.pwf and change the

name to Workflow 6.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 6.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_6.

Â Set CFBundleName to Workflow 6.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 6";

Description = "Here we added the watermarking of the video.";

Step 3: Create a Watermark

m Create a watermark and save it as Watermark.png in Workflow 6.pwf/Contents/

Resources/Images/.

Alternatively, use the Watermark.png file provided with the finished Workflow 6.pwf

bundle.

Step 4: Configure the Workflow Template

1 Open the workflow template template.plist.

Chapter 8 Watermarking 61

2 In the taskSpecifications section of the workflow template, add the watermark task

after the preflight task:

// Water-mark the input video

watermark = {

dependsOnTasks = (preflight);

command = "/usr/bin/pcastaction";

arguments = (

watermark,

"--basedir=$$Base Directory$$",

// Path to the watermark image.

"--watermark=$$Workflow Resource Path$$/Images/Watermark.png",

// Path to the input QuickTime movie file.

"--input=$$Content File Basename$$$$Content File Extension$$",

// Path where the output QT reference movie will be written.

// This is a reference movie and not a flat movie file.

"--output=$$Content File Basename$$-watermarked.mov"

);

};

3 In the taskSpecifications section of the workflow template, modify the encode_ipod

task as follows:

encode_ipod = {

// Wait for the watermark task to complete before running

dependsOnTasks = (watermark);

command = "/usr/bin/pcastaction";

arguments = (

encode,

"--basedir=$$Base Directory$$",

// The input movie is now the watermarked video.

"--input=$$Content File Basename$$-watermarked.mov",

"--output=$$Content File Basename$$-ipod.m4v",

"--encoder=ipod"

);

};

4 Save and close the template.plist file.

Deploying the Workflow
Deploy Workflow 6 and test it to make sure it runs without a problem, and then

proceed to the next chapter.

62 Chapter 8 Watermarking

9

 63

9 Adding Quartz Composer Effects

Add the Lower Third Quartz Composer effect to the
watermarked version of the submitted movie.

To add a Quartz Composer effect, you’ll define it in Quartz Composer. For your

convenience, workflow tutorial files that you have downloaded earlier include the

Lower Third.qtz Quartz composition, which you’ll use to add lower third titling.

64 Chapter 9 Adding Quartz Composer Effects

The Workflow at a Glance
The Lower Third workflow (Workflow 7) consists of the following tasks:

Only the new Lower Third task is added.

About the Lower Third Composition
The Lower Third.qtz is produced using Quartz Composer and defines a title bar that can

be placed over a movie.

The qceffect subcommand of the pcastaction command provides an option for

applying a Lower Third Quartz Composer composition (in this case Third.qtz) to the

input movie. In addition, the qceffect subcommand takes other input (in this example,

the title of the podcast and the name of the author) and passes them to predefined

ports on the Lower Third.qtz composition.

The Lower Third.qtz composition takes the input text and applies it to the composition,

which is then rendered onto the movie.

Encode Audio Encode iPod

Watermark

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Preflight

Lower Third

Publish to

Web Server

Publish to

Web Server

Chapter 9 Adding Quartz Composer Effects 65

Workflow 7 Setup Summary
Workflow 7 builds on Workflow 6 by adding a task that adds a lower third title bar to

the video.

To create Workflow 7, you’ll perform the following tasks:

1 Create the workflow bundle (page 65).

2 Configure the workflow metadata (see page 65).

3 Add the Lower Third composition to the workflow (see page 65).

4 Configure the workflow template (page 65).

Setting Up Workflow 7

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 6.pwf and change the

name to Workflow 7.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 7.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_7.

Â Set CFBundleName to Workflow 7.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 7";

Description = "Here we added the lower third titling to the video.";

Step 3: Add the Lower Third Composition to the Workflow

m Add the lower third effect Quartz Composer (QC) effect (Lower Third.qtz) to the

Composition repository (/Library/Compositions/) on all the rendering Xgrid agent

systems.

Step 4: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the lower_third task

after the watermark task:

66 Chapter 9 Adding Quartz Composer Effects

// Add lower third titling to the watermarked video using a QC effect

lower_third = {

dependsOnTasks = (watermark);

command = "/usr/bin/pcastaction";

arguments = (

// Use the qceffect subcommand of pcastaction to apply the QC effect

qceffect,

"--basedir=$$Base Directory$$",

// Pass the repository identifier for the composition to use

"--composition=lower third",

"--input=$$Content File Basename$$-watermarked.mov",

// Path where the output QuickTime reference movie will be written.

// This is a reference movie and not a flat movie file.

"--output=$$Content File Basename$$-lower_third.mov",

// Arguments following the “--” argument are passed to the QC effect

"--",

// Pass to the Title port of the composition...

"--Title",

// ...the title of the episode.

"$$Title$$",

// Pass to the Author port of the composition...

"--Author",

// ...the full user name of the submitter

"$$User Full Name$$"

);

};

3 In the taskSpecifications section of the workflow template, modify the encode_ipod

task as follows:

encode_ipod = {

// Wait for the lower_third task to complete before running.

dependsOnTasks = (lower_third);

command = "/usr/bin/pcastaction";

arguments = (

encode,

"--basedir=$$Base Directory$$",

// The input movie is now the watermarked video.

"--input=$$Content File Basename$$-lower_third.mov",

Chapter 9 Adding Quartz Composer Effects 67

"--output=$$Content File Basename$$-ipod.m4v",

"--encoder=ipod"

);

};

4 Save and close the template.plist file.

Deploying the Workflow
Deploy Workflow 7 and test it to make sure it runs without a problem, and then

proceed to the next chapter.

68 Chapter 9 Adding Quartz Composer Effects

10

 69

10 Adding an Introductory Video

Add a task that adds an intro movie to the titled version of
the submitted movie.

In this chapter you’ll use the merge subcommand of pcastaction to merge an intro

movie with the titled movie.

70 Chapter 10 Adding an Introductory Video

The Workflow at a Glance
The Adding an Introductory Video workflow (Workflow 8) consists of the following

tasks:

About the Intro Movie
The workflow tutorial files include an intro movie that you can use to add to

Workflow 8. You can also use your own intro movie.

The intro movie (Introduction.mov) is included with the finished workflow tutorial files

in Workflow 8.pwf/Contents/Resources/Movies/. It’s about 20 seconds long, and the last

10 seconds consist of black frames on which you’ll later superimpose a title.

Encode Audio Encode iPod

Watermark

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Preflight

Lower Third

Intro

Publish to

Web Server

Publish to

Web Server

Chapter 10 Adding an Introductory Video 71

Workflow 8 Setup Summary
Workflow 8 builds on Workflow 7 by adding a task that adds an intro movie at the

beginning of the titled video.

To create Workflow 8, you’ll perform the following tasks:

1 Create the workflow bundle (page 71).

2 Configure the workflow metadata (see page 71).

3 Configure the workflow template (page 71).

Setting Up Workflow 8

Step 1: Create the Workflow Bundle

1 Make a copy of /Library/PodcastProducer/Workflows/Workflow 7.pwf and change the

name to Workflow 8.pwf.

Step 2: Configure the Workflow Metadata

1 Open the Workflow 8.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_8.

Â Set CFBundleName to Workflow 8.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 8";

Description = "Here we added an introduction bumper movie.";

4 Copy the intro movie (Introduction.mov) to Workflow 8.pwf/Contents/Resources/

Movies/.

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the intro task after

the lower_third task:

// Step 2: Add the task that merges the introduction movie with the

watermarked content video using a Quartz Composer Transition (abides to

the Image transition protocol)

intro = {

dependsOnTasks = (lower_third);

command = "/usr/bin/pcastaction";

arguments = (

merge,

"--basedir=$$Base Directory$$",

72 Chapter 10 Adding an Introductory Video

// First movie to merge.

"--input1=$$Workflow Resource Path$$/Movies/Introduction.mov",

// Second movie to merge.

"--input2=$$Content File Basename$$-lower_third.mov",

// Quartz Composer transition between the first and second movies.

// This can either be an absolute filepath to a composition or

// a QC Repository identifier (begins with a '/'). The identifier is

// case-sensitive.

"--transition=$$Quartz Composer Intro Transition$$",

// How long in seconds the transition should last.

"--duration=$$Intro Transition Duration$$",

// Path to where the output reference movie will be written.

"--output=$$Content File Basename$$-watermarked-intro.mov",

);

};

3 In the taskSpecifications section of the workflow template, modify the encode_ipod

task as follows:

encode_ipod = {

// Wait for the intro task to complete before running.

dependsOnTasks = (intro);

command = "/usr/bin/pcastaction";

arguments = (

encode,

"--basedir=$$Base Directory$$",

// The input movie is now the titled video with the added intro movie.

"--input=$$Content File Basename$$-watermarked-intro.mov",

"--output=$$Content File Basename$$-ipod.m4v",

"--encoder=ipod"

);

};

4 Save and close the template.plist file.

Deploying the Workflow
Deploy Workflow 8 and test it to make sure it runs without a problem, and then

proceed to the next chapter.

11

 73

11 Dynamic Titling

Add a task for dynamically adding a title to the movie.

In this chapter, you’ll use the title subcommand of pcastaction to dynamically add a

title to the intro movie.

74 Chapter 11 Dynamic Titling

The Workflow at a Glance
The Dynamic Titling workflow (Workflow 9) consists of the following tasks:

Preflight

Watermark Title

Lower Third

Encode Audio Encode iPod

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Intro

Publish to

Web Server

Publish to

Web Server

Chapter 11 Dynamic Titling 75

Workflow 9 Setup Summary
Workflow 9 builds on Workflow 8 by adding a task that adds a title to the video.

To create Workflow 9, you’ll perform the following tasks:

1 Create the workflow bundle (page 75).

2 Configure the workflow metadata (see page 75).

3 Configure the workflow template (page 75).

4 Configure workflow properties in Server Admin (page 77).

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 8.pwf and change the

name to Workflow 9.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 9.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_9.

Â Set CFBundleName to Workflow 9.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 9";

Description = "Here we added the titling of the video.";

Step 3: Configure the Workflow Template

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the title task after

the lower_third task:

title = {

dependsOnTasks = (preflight);

command = "/usr/bin/pcastaction";

arguments = (

title,

"--basedir=$$Base Directory$$",

// Movie on top of which to add the title.

"--input=$$Workflow Resource Path$$/Movies/Introduction.mov",

76 Chapter 11 Dynamic Titling

// Titling composition to use.

"--composition=$$Titling Composition$$",

// The title to add.

"--title=$$Title$$",

// Author’s name to add to the intro movie.

"--author=$$User Full Name$$",

// By default, the title task adds the date to the input movie.

// However, to overwrite the date, use the --date option.

//"--date=Today",

// Organization

"--organization=$$Organization$$",

// Offset (in sec) at which the titling starts.

// In this case, the title is added after the first 8.25 seconds.

"--offset=8.25",

// Total duration of the output movie in seconds.

"--duration=20",

// Path to the output file.

"--output=Introduction.mov"

);

};

3 In the taskSpecifications section of the workflow template, modify the intro task as

follows:

intro = {

// Wait for the title and lower-third tasks to complete before running.

dependsOnTasks = (title, lower_third);

command = "/usr/bin/pcastaction";

arguments = (

merge,

"--basedir=$$Base Directory$$",

// This task now takes the titled movie generated by the title task.

"--input1=Introduction.mov",

"--input2=$$Content File Basename$$-lower_third.mov",

"--transition=$$Quartz Composer Intro Transition$$",

"--duration=$$Intro Transition Duration$$",

"--output=$$Content File Basename$$-watermarked-titled-intro.mov",

);

 };

Chapter 11 Dynamic Titling 77

4 Save and close the template.plist file.

Step 4: Configure workflow properties in Server Admin

Before you can deploy the workflow, you need to define the values of the variables you

specified in the workflow template.

To define variable values:

1 In Server Admin, set the values for the following workflow variables:

Â Titling Composition—The Quartz Composer composition used by the workflow to

add a title to the video.

Â Organization—The name of the organization to be added to the introduction video.

2 Click Save.

Deploying the Workflow
Deploy Workflow 9 and test it to make sure it runs without a problem, and then

proceed to the next chapter.

78 Chapter 11 Dynamic Titling

12

 79

12 Calling Command-Line Tools

In this chapter, you’ll learn how to run command-line tools
from a workflow.

In this chapter, you’ll use the pcastaction command to run command-line tools that

add workflow functionality not available in pcastaction.

80 Chapter 12 Calling Command-Line Tools

The Workflow at a Glance
The Command-Line Tools workflow (Workflow 10) consists of the following tasks:

In this workflow, you’ll create two new tasks:

Â Text2Speech—Uses the say command-line tool to read aloud the title and author

strings

Â Publish to Web Server—Publishes the audio file generated by the Text2Speech task

Preflight

Watermark Title

Lower Third

Encode Audio Encode iPod

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Intro

Publish to

Web Server

Publish to

Web Server

Text2Speech

Publish to

Web Server

Chapter 12 Calling Command-Line Tools 81

Workflow 10 Setup Summary
Workflow 10 builds on Workflow 9 by adding tasks that convert text to speech and

publish the resulting audio.

To create Workflow 10, you’ll perform the following tasks:

1 Create the workflow bundle (page 81).

2 Configure the workflow metadata (page 81).

3 Configure the workflow metadata (see page 81).

4 Modify the mail template (page 83).

Setting Up Workflow 10

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 9.pwf and change the

name to Workflow 10.pwf.

Step 2: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 10.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_10.

Â Set CFBundleName to Workflow 10.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 10";

Description = "Here we added a task that reads out the title and author

using Text2Speech.";

Step 3: Configure the Workflow Template

Configure the workflow template as follows:

Â Add a task that converts the podcast title and author information to speech.

Â Add a task that publishes the audio of the spoken text.

Â Delete the publish_say task, as it is no longer needed.

Â Modify the dependency of the template_mail task.

82 Chapter 12 Calling Command-Line Tools

To configure the workflow template:

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the say task after the

publish_ipod task:

// Generate an audio version of the podcast’s title and author.

say = {

dependsOnTasks = (preflight);

command = "/usr/bin/pcastaction";

arguments = (

// The shell subcommand of pcastaction allows you to run commands in

// an environment controlled by pcastaction. This minimizes the

// possibility of running into problems, which can happen when you run

// commands directly.

shell,

"--basedir=$$Base Directory$$",

// What follows “--” is the command and its arguments.

"--",

// Run say, the text2speech tool (For more details, see its man page).

"/usr/bin/say",

// Tells 'say' to output an aiff file.

"-o",

// Path of the output file.

"title.aiff",

// Text to be spoken.

"Welcome to $$Title$$ presented by $$User Full Name$$"

);

};

This task runs the shell command say, which converts the input text to speech. For

example, if the title of the presentation is Workflow Design and the name of the author

is Anna Johnson, this task runs the following command:

usr/bin/say –o title.aiff "Welcome to Workflow Design presented by Anna

Johnson"

This command will read aloud the following:

Welcome to Workflow Design presented by Anna Johnson

3 In the taskSpecifications section of the workflow template, add the publish_say task

after the say task.

// Publish the generated audio file to the Web server.

// This task is extremely similar to the other publishing tasks.

publish_say = {

dependsOnTasks = (say);

Chapter 12 Calling Command-Line Tools 83

command = "/usr/bin/pcastaction";

arguments = (

publish,

"--basedir=$$Base Directory$$",

"--web_root=$$Web Document Root$$",

"--web_url=$$Web URL$$",

"--date=$$Date_YYYY-MM-DD$$",

"--title=$$Title$$",

"--format=audio",

// String representing the published format

"--type=audio/x-aiff",

// MIME type of audio file we are publishing

"--file=title.aiff",

"--outfile=say_publish_description_file.yaml"

);

};

4 In the taskSpecifications section of the workflow template, modify the dependency

of the template_mail task as indicated in the workflow diagram.

template_mail = {

// Wait until groupblog and publish_say finish running

dependsOnTasks = (groupblog, publish_say);

command = "/usr/bin/pcastaction";

arguments = (

template,

"--basedir=$$Base Directory$$",

"--template=$$Workflow Resource Path$$/Templates/mail.txt.erb",

"--output=mail.txt"

);

};

5 Save and close the template.plist file.

Step 4: Modify the Mail Template

m Modify the mail template mail.txt.erb to include a link to the audio file of the spoken

text:

% administrator_full_name = (properties["Administrator Full Name"] || "")

% administrator_email_address = (properties["Administrator Email Address"]

|| "")

% audience_email_address = (properties["Audience Email List"] || "")

% user_full_name = (properties["User Full Name"] || "")

% user_email_address = (properties["User Email Address"] || "")

% group_short_name = (properties["Group Short Name"] || "")

% group_full_name = (properties["Group Full Name"] || "")

% title = (properties["Title"] || "")

84 Chapter 12 Calling Command-Line Tools

% group_blog_entry_url = ((IO.read("group_blog_entry_url.txt").chomp rescue

nil) || "")

% seconds_since_epoch = (properties["Recording Started At"] || "").to_i

% groups_web_server_url = (properties["Groups Web Server URL"] || "")

% groups_blog_url = groups_web_server_url + '/' + group_short_name + '/blog/

'

% blog_feed_url = groups_blog_url.gsub(/^http/, 'itpc') + 'index.its'

% ipod_blog_feed_url = blog_feed_url + "?mediaTypeTag=ipod"

% audio_blog_feed_url = blog_feed_url + "?mediaTypeTag=audio"

% ipod_file_url =

((YAML::load_file("ipod_publish_description_file.yaml")[:url] rescue

nil) || "")

% audio_file_url =

((YAML::load_file("audio_publish_description_file.yaml")[:url] rescue

nil) || "")

%

%# Define a variable that contains the URL to the audio file with the

test2speech audio file generated by the 'say' task.

% title_audio_url =

((YAML::load_file("say_publish_description_file.yaml")[:url] rescue

nil) || "")

%

% from_addresses = [emailify(administrator_full_name,

administrator_email_address)]

% subject_value = "New Episode in #{group_full_name} Wiki group:

#{quotify(title)}"

% to_addresses = [audience_email_address, emailify(user_full_name,

user_email_address), emailify(administrator_full_name,

administrator_email_address)]

%

<%= encoded_header_with_addresses("From", from_addresses) %>

<%= encoded_header_with_value("Subject", subject_value) %>

<%= encoded_header_with_addresses("To", to_addresses) %>

New Podcast Episode in <%= group_full_name %> Wiki group

<%= quotify(title) %> was recorded at <%=

localized_time(seconds_since_epoch) %> on <%=

localized_date(seconds_since_epoch) %>:

<%= braketify(group_blog_entry_url) %>

%# Add a link to the audio file containing the text2speech of the title

Listen to the title here: <%= braketify(title_audio_url) %>

This episode has been published to the <%= group_full_name %> blog:

<%= braketify(groups_blog_url) %>

Subscribe in iTunes:

iPod video: <%= braketify(ipod_blog_feed_url) %>

iPod audio: <%= braketify(audio_blog_feed_url) %>

Chapter 12 Calling Command-Line Tools 85

Download the episode:

iPod video: <%= braketify(ipod_file_url) %>

iPod audio: <%= braketify(audio_file_url) %>

This email was sent by Podcast Producer.

Deploying the Workflow
Validate, deploy, and test Workflow 10 to verify that it runs successfully. Play the

podcasts and verify that you can listen to the title and author information being

spoken at the beginning of the podcast.

When you’re finished, proceed to the next chapter.

86 Chapter 12 Calling Command-Line Tools

13

 87

13 Integrating with Custom Scripts

In this chapter, you’ll learn how to add custom functionality
to the workflow through scripts.

In this chapter, you’ll use a custom script to join the audio version of the title and

author information to the audio of the submitted movie.

88 Chapter 13 Integrating with Custom Scripts

The Workflow at a Glance
The Integrating with Custom Scripts workflow (Workflow 11) consists of the following

tasks:

In this workflow, the Join Audio task takes the file generated by the Text2Speech task

and merges it with the audio of the submitted movie. The task uses a Ruby script and

the Ruby Cocoa bridge to call QTKit and join the two movies with a gap inserted

between them.

Preflight

Text2Speech Watermark Title

Join Audio Lower Third

Encode Audio Encode iPod

Blog Template

Post to Blog

Email Template

Send Email

Postflight

Intro

Publish to

Web Server

Publish to

Web Server

Chapter 13 Integrating with Custom Scripts 89

Workflow 11 Setup Summary
Workflow 11 builds on Workflow 10 by adding a task that joins the spoken audio with

the audio of the submitted movie.

To create Workflow 11, you’ll perform the following tasks:

1 Create the workflow bundle (page 89).

2 Write a Ruby script that joins two QuickTime movies (page 89).

3 Configure the workflow metadata (see page 91).

4 Configure the workflow template (page 91).

5 Restore the mail template (page 93).

Setting Up Workflow 11

Step 1: Create the Workflow Bundle

m Make a copy of /Library/PodcastProducer/Workflows/Workflow 10.pwf and change the

name to Workflow 11.pwf.

Step 2: Write a Ruby Script that Joins Two QuickTime Movies

m Write the following Ruby script to join the spoken version of the title and author

information with the audio of the submitted movie. Save the script as qtjoin.rb in

Workflow 11.pwf/Contents/Resources/Tools/.

This script can join any two QuickTime files, not just audio files.

Import the Ruby Cocoa bridge.

For more information about Ruby Cocoa,

see http://rubycocoa.sourceforge.net/HomePage.

require 'osx/cocoa'

Load the QTKit framework.

OSX.require_framework 'QTKit'

Print version helper method.

def print_version

 $stderr.puts "qtjoin, version 1.0"

 $stderr.puts "Copyright 2008 Apple, Inc"

 $stderr.puts

end

Print usage helper method.

def print_usage

 print_version

 $stderr.puts "Takes two movies and joins them with an optional gap in the

middle"

90 Chapter 13 Integrating with Custom Scripts

 $stderr.puts "usage: qtjoin first_movie_path second_movie_path

output_movie_path [gap]"

 $stderr.puts " qtjoin movie1.mov movie2.mov output.mov 1"

 $stderr.puts

end

Check to see if there are enough arguments.

if ARGV.size < 3 || ARGV.size > 4

 print_usage

 exit(-1)

end

Assign better names to the arguments.

first_input_path = ARGV[0]

second_input_path = ARGV[1]

output_path = ARGV[2]

gap = (ARGV.size > 3 ? ARGV[3].to_f : 0.0)

Load the first movie.

first_input_movie, error =

OSX::QTMovie.movieWithFile_error(first_input_path)

Check to see if the first movie opened successfully.

if first_input_movie == nil or error != nil

 $stderr.puts "could not load first movie"

 exit(1)

end

Load the second movie.

second_input_movie, error =

OSX::QTMovie.movieWithFile_error(second_input_path)

Check to see if the second movie opened successfully.

if second_input_movie == nil or error != nil

 $stderr.puts "could not load second movie"

 exit(1)

end

Create the output movie.

output_movie = OSX::QTMovie.movie

Make the output movie editable.

output_movie.setAttribute_forKey(true, OSX::QTMovieEditableAttribute)

Determine time to insert the inter-movie gap and create its duration.

zero_time = OSX::QTMakeTime(0, first_input_movie.duration.timeScale)

gap_duration = OSX::QTMakeTimeWithTimeInterval(gap)

Define the time ranges for the first and second input movies.

first_input_movie_time_range = OSX::QTMakeTimeRange(zero_time,

first_input_movie.duration)

Chapter 13 Integrating with Custom Scripts 91

second_input_movie_time_range = OSX::QTMakeTimeRange(zero_time,

second_input_movie.duration)

Insert the two movies into the output movie at the correct times.

output_movie.insertSegmentOfMovie_timeRange_atTime(first_input_movie,

first_input_movie_time_range, output_movie.duration)

output_movie.insertSegmentOfMovie_timeRange_atTime(second_input_movie,

second_input_movie_time_range,

OSX::QTTimeIncrement(output_movie.duration, gap_duration))

Write the output movie to file.

success = output_movie.writeToFile_withAttributes(output_path, nil)

Perform error checking.

unless success

 $stderr.puts "could not save movie"

 exit(1)

end

exit(0)

Step 3: Configure the Workflow Metadata

Configure the following workflow metadata:

Â Workflow bundle identifier

Â Workflow bundle name

Â Workflow name

Â Workflow description

To configure the workflow metadata:

1 Open the Workflow 11.pwf bundle.

2 Open Info.plist in Property List Editor and do the following:

Â Set CFBundleIdentifier to com.apple.PodcastProducer.workflow.Workflow_11.

Â Set CFBundleName to Workflow 11.

3 Open InfoPlist.strings and set the Name and Description keys as follows:

Name = "Workflow 11";

Description = "Here we added a task that reads out the title and author

using Text2Speech.";

Step 4: Configure the Workflow Template

Configure the workflow template as follows:

Â Add a task to join the audio of the podcast title and author information to the audio

of the podcast.

Â Delete the publish_say task, which is no longer needed.

Â Modify the dependencies of the encode_audio and template_mail tasks.

92 Chapter 13 Integrating with Custom Scripts

To configure the workflow template:

1 Open the workflow template template.plist.

2 In the taskSpecifications section of the workflow template, add the join_audio task

after the say task.

// Call the qtjoin.rb script to join the text2speech audio file and the

input

// movie.

join_audio = {

dependsOnTasks = (say);

command = "/usr/bin/pcastaction";

arguments = (

shell,

"--basedir=$$Base Directory$$",

"--",

// Path to the qtjoin.rb script.

"$$Workflow Resource Path$$/Tools/qtjoin.rb",

// Path to the text2speech file.

"title.aiff",

// Path to the second file (input movie).

"$$Content File Basename$$$$Content File Extension$$",

// Path where the output file will be written to.

"$$Content File Basename$$-withAudioTitle.mov",

// Duration, in seconds, of the gap.

"1"

);

};

3 In the taskSpecifications section of the workflow template, modify the dependency

of the encode task as indicated in the workflow diagram.

encode_audio = {

dependsOnTasks = (join_audio);

command = "/usr/bin/pcastaction";

arguments = (

encode,

"--basedir=$$Base Directory$$",

"--input=$$Content File Basename$$$$Content File Extension$$",

"--output=$$Content File Basename$$-ipod.m4v",

"--encoder=mp4_audio_high"

);

};

4 In the taskSpecifications section of the workflow template, remove the publish_say

task, which is no longer needed.

Chapter 13 Integrating with Custom Scripts 93

5 In the taskSpecifications section of the workflow template, modify the dependency

of the template_mail task as indicated in the workflow diagram.

template_mail = {

dependsOnTasks = (groupblog);

command = "/usr/bin/pcastaction";

arguments = (

template,

"--basedir=$$Base Directory$$",

"--template=$$Workflow Resource Path$$/Templates/mail.txt.erb",

"--output=mail.txt"

);

};

6 Save and close the template.plist file.

Step 5: Restore the Mail Template

You need to restore to the mail template used in Workflow 8, now that you have

removed the Text2Speech task.

To restore the mail template:

m Replace the mail template in Workflow 11 (Workflow 11.pwf/Contents/Resources/

Templates/mail.txt.erb) with the template used in Workflow 8 (Workflow 8.pwf/

Contents/Resources/Templates/mail.txt.erb).

Deploying the Workflow
Validate, deploy, and test Workflow 11 to make sure it runs successfully.

You have now completed the workflow. The next two chapters discuss general

workflow design and troubleshooting tips.

94 Chapter 13 Integrating with Custom Scripts

14

 95

14 Tips for Designing and
Developing Workflows

Learn how to better design and develop Podcast Producer
workflows.

Use the tips in this chapter to improve and speed up the design and development of

Podcast Producer workflows.

Create a Graph of the Workflow
The first step when designing a workflow is to create a graph of the tasks you want the

workflow to execute.

Use a flowcharting tool to draw the graph, because it gives you the flexibility you need

to easily modify your graphs. When making the graph, make sure you use arrows to

indicate dependencies, as in the examples shown throughout this tutorial.

After you finalize the design, start implementing the workflow design.

Start Small
Workflows can quickly grow bigger and more complicated due to task inter-

dependencies. As a result, if you attempt creating the workflow in one iteration, design

or implementation errors can complicate the debugging process.

Instead of implementing your workflow design all at once, you should implement your

workflow design as you have done in this tutorial—incrementally.

Go back to your graph and create a subgraph consisting of the first few tasks. Then,

create more graphs by adding more tasks to every subsequent graph, just as you did in

this tutorial, until the implementation is complete.

Every time you implement a subset of the original graph, deploy it and test it to make

sure that it works as intended. If the workflow completes successfully, then expand it by

adding one or two tasks at a time.

96 Chapter 14 Tips for Designing and Developing Workflows

In this way, you can progress slowly but surely until the workflow is completed. Testing

and debugging will be limited to a few tasks at time and will go much faster.

Use an All-in-One Setup for Workflow Development
To simplify and speed up workflow development, use one computer running Mac OS X

Server v10.5 to provide Podcast Producer services and all other services needed by your

workflow.

By using a single computer for workflow development, you eliminate the dependency

on other services running on other computers outside your control. Otherwise, if even

just one service is down, you won’t be able to deploy and test workflows until the

service is back in operation.

Validate Your Workflow Before Running It
Podcast Producer provides a way for you to validate your workflow before running it.

To validate a workflow, enter the following command:

$ pcastconfig --validate_workflow_at_path path_to_workflow

For example, to validate the Hello World! workflow, enter:

$ pcastconfig --validate_workflow_at_path /Library/PodcastProducer/

Workflows/Workflow\ 1.pwf

Workflow: /Library/PodcastProducer/Workflows/Workflow 1.pwf is VALID

For more information about pcastconfig, see its man page.

Check Metadata
In addition to the key/value pairs defined in Server Admin, Podcast Producer stores

metadata about a submitted job in the properties.plist file.

The properties.plist file contains all the metadata used by a workflow, and is useful for

troubleshooting values and discovering what metadata is available for workflow

development.

Look at a properties.plist file from a previous workflow submission to see all the

metadata you can use.

Podcast Producer stores this file in the Recordings folder on the shared file system.

In a workflow template, you can access the value of every key in the properties.plist file

by surrounding the key with $$ characters. For example, to access the value of the

Author key, use the $$Author$$ variable to represent the value of the key.

Chapter 14 Tips for Designing and Developing Workflows 97

The following is an example of the contents of a properties.plist file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.example.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Administrator Email Address</key>

<string>pcpadmin@sam.example.com</string>

<key>Administrator Full Name</key>

<string>pcpadmin</string>

<key>Administrator Short Name</key>

<string>pcpadmin</string>

<key>Approval Email List</key>

<string>pcpadmin@sam.example.com</string>

<key>Approval Folder</key>

<string>/Volumes/Data/SFS//Approval/</string>

<key>Archive Root</key>

<string>/Volumes/Data/SFS//Archive</string>

<key>Audience Email List</key>

<string>pcpuser@sam.example.com</string>

<key>Audience SMS List</key>

<string>pcpuser@sam.example.com</string>

<key>Author</key>

<string>sam</string>

<key>Base Directory</key>

<string>/Volumes/Data/SFS/Recordings/3D994F4E-549A-41CF-BC62-

F8E2DADB90B1</string>

<key>Comment</key>

<string>no comment</string>

<key>Content File Basename</key>

<string>apple-iphone-how_to_640x496</string>

<key>Content File Extension</key>

<string>.mov</string>

<key>Content File Name</key>

<string>apple-iphone-how_to_640x496.mov</string>

<key>Copyright</key>

<string>Copyright (c) 2007 Apple Inc.</string>

<key>Date</key>

<string>20080212-142310</string>

<key>Date_YYYY-MM-DD</key>

<string>2008-02-12</string>

<key>Description</key>

<string>Auto-generated metadata for Blog with streaming and intro at:

20080212-142310</string>

<key>Exit Transition Duration</key>

<string>0.75</string>

<key>Exit Video Path</key>

<string>/Volumes/Data/SFS//Caches/Resources/Movies/Exit.mov</string>

<key>Global Resource Path</key>

<string>/Volumes/Data/SFS/Caches/Resources</string>

98 Chapter 14 Tips for Designing and Developing Workflows

<key>Group Full Name</key>

<string>Podcasts</string>

<key>Group Short Name</key>

<string>podcasts</string>

<key>Groups Administrator Username</key>

<string>pcpadmin</string>

<key>Groups Web Server URL</key>

<string>http://sam.example.com/groups</string>

<key>Intro Transition Duration</key>

<string>3</string>

<key>Introduction Video Path</key>

<string>/Volumes/Data/SFS//Caches/Resources/Movies/Introduction.mov</

string>

<key>Keywords</key>

<string>Blog with streaming and intro 20080212-142310 test3</string>

<key>Notification Language</key>

<string>English</string>

<key>Organization</key>

<string>Example Organization</string>

<key>Podcast Producer URL</key>

<string>https://sam.example.com:8170/podcastproducer</string>

<key>Postflight Script Path</key>

<string>/Volumes/Data/SFS//Caches/Resources/Tools/postflight_script</

string>

<key>Preflight Script Path</key>

<string>/Volumes/Data/SFS//Caches/Resources/Tools/preflight_script</

string>

<key>QTSS URL</key>

<string>rtsp://sam.example.com/PodcastProducer</string>

<key>Quartz Composer Exit Transition</key>

<string>/dissolve</string>

<key>Quartz Composer Filter</key>

<string>/sepia</string>

<key>Quartz Composer Intro Transition</key>

<string>/swing</string>

<key>QuickTime Streaming Media Root</key>

<string>/Volumes/Data/SFS//Streams</string>

<key>Recording Started At</key>

<string>1202854992</string>

<key>Recording Stopped At</key>

<string>1202854992</string>

<key>SMTP Server</key>

<string>sam.example.com</string>

<key>Server UUID</key>

<string>85E4CEA7-00BF-470A-A558-E254D8F30524</string>

<key>Shared Filesystem</key>

<string>/Volumes/Data/SFS/</string>

<key>Title</key>

<string>shipping Blog with streaming and intro (1)</string>

<key>Titling Composition</key>

Chapter 14 Tips for Designing and Developing Workflows 99

<string>/Volumes/Data/SFS//Caches/Resources/Compositions/FlyingTitle.qtz</

string>

<key>User Email Address</key>

<string>pcpuser@sam.example.com</string>

<key>User Full Name</key>

<string>pcpuser</string>

<key>User Home Directory</key>

<string>99</string>

<key>User ID</key>

<string>1025</string>

<key>User Short Name</key>

<string>pcpuser</string>

<key>Watermark Image</key>

<string>/Volumes/Data/SFS//Caches/Resources/Images/Watermark.png</string>

<key>Web Document Root</key>

<string>/Volumes/Data/SFS//Podcasts</string>

<key>Web URL</key>

<string>http://sam.example.com/Podcasts</string>

<key>Workflow Bundle Path</key>

<string>/Volumes/Data/SFS/Caches/Workflows/Blog with streaming and

intro.pwf</string>

<key>Workflow Resource Path</key>

<string>/Volumes/Data/SFS/Caches/Workflows/Blog with streaming and

intro.pwf/Contents/Resources</string>

<key>Xgrid Job Name</key>

<string>shipping Blog with streaming and intro (1) by pcpuser (Blog with

streaming and intro)</string>

<key>iTunes U Posting Credentials</key>

<string>Administrator@urn:mace:itunesu.com:sites:podcastproducer.exampl

e.com</string>

<key>iTunes U Site URL</key>

<string>podcastproducer.example.com</string>

<key>iTunes U Tab ID</key>

<string>1234567890.12345678901</string>

</dict>

</plist>

Keep Temporary Files
When Podcast Producer receives a workflow job for processing, it creates a temporary

directory for the job on the shared file system (for example, /Volumes/Data/SFS/

Recordings/3D994F4E-549A-41CF-BC62-F8E2DADB90B1/) where it stores the temporary

files generated while processing the workflow.

To save space, the default postflight script that ships with Podcast Producer erases all

the temporary files it generates. However, some of these temporary files (for example,

properties.plist) contain information that can be useful when debugging workflows.

100 Chapter 14 Tips for Designing and Developing Workflows

To keep the temporary files, set the Postflight property in Server Admin (Podcast

Producer > Settings > Properties) to /usr/bin/true. The true script returns a true

(positive) value and does not erase the temporary files.

Then, after you finish troubleshooting a workflow and are ready to deploy it, you can

set the Postflight property in Server Admin back to the default value of

/System/Library/PodcastProducer/Resources/Tools/postflight_script or whatever

other postflight script you want to run. After the workflow is executed, Podcast

Producer deletes the temporary files.

15

 101

15 Debugging Workflows

Learn the tools and techniques available for debugging
workflows.

This chapter discusses various options for debugging workflows.

Using Xgrid Admin
Xgrid Admin lets you monitor the progress of your workflows and provides information

about Xgrid jobs, including the Xgrid identifier. Double-clicking a job displays more

information about it.

Using Xgrid Admin, you can detect problems and take corrective actions promptly.

You can pause a job and restart it, but you can’t rerun it if it fails.

Using the xgrid Command
In addition, to Xgrid Admin, you can also use the xgrid command to display all the

information you need about an Xgrid job by specifying its Xgrid job identifier.

$ xgrid -h FQDN -auth Kerberos -job results -id job_identifier [-tid task_identifier]

$ xgrid -h FQDN -auth Kerberos -job specification -id job_identifier

Monitoring Xgrid Tasks
Each Xgrid agent adds information about running Xgrid tasks to the system log and to

/Library/Logs/Xgrid/xgridagentd.log. To monitor Xgrid tasks, check these logs for

information. The xgridagentd.log file provides more detail than the system log.

Debugging Failing Commands
If a task fails, one way to debug it is to run it in the Recording folder on the shared file

system used by Podcast Producer.

102 Chapter 15 Debugging Workflows

You can copy the command from the system log.

To run the command in the Recording folder:

1 Start an SSH session:

$ ssh pcastxgrid@localhost

2 Change the directory to the Recording folder:

$ cd path_to_Recording_folder

3 Copy the command in question from the system log and run it:

$ pcastaction command arguments

Executing tasks from the command line recreates the context in which the tasks are run

in Xgrid. This allows you to zero in on why tasks are failing. In addition, you get more

information about the running tasks, including additional error messages that you

won’t see elsewhere, by reading stdout from the command line.

